If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+8q-3=0
a = 2; b = 8; c = -3;
Δ = b2-4ac
Δ = 82-4·2·(-3)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{22}}{2*2}=\frac{-8-2\sqrt{22}}{4} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{22}}{2*2}=\frac{-8+2\sqrt{22}}{4} $
| 6=5h-9 | | 9x-1=3x+22 | | 5x-6=81 | | Y=-0.75x-2 | | 5(2x+9)+2(x+11)=3(2x+4)+45 | | 51=3x-6 | | 13=5=5-8m | | 7/2=x/21 | | 5n+34=-2(1-7n5n) | | -2x+6=+2 | | 6x-15=36 | | 26=7(g-g)+12 | | x3x=−29 | | (3x+4)(4x2+8x+4)=0 | | x3x=−29 | | 12-4x=7x-21 | | 17=16+x | | n^2+n-3000=0 | | -1+c=2 | | 6n21=21 | | 4=-2x+7 | | 2(2x+4)=4(2x-6) | | 6x+4(x+6)=10x+24 | | 10x-3=4-4x | | 37=q-60 | | 1/5y+3y=2y+42 | | x/15=8⅓ | | -3x^2+12x+351=0 | | 6x^2+3x^2=40^2 | | 4(a+2)=12 | | 14.28=2*3.14*r/4+2r | | 1/2(2x+6)=3x+15 |